
A
s
c

D
a

b

a

A
R
R
A
A

K
2
B
C
C
M
M

1

c
d

•

•

•

•

0
d

Journal of Chromatography A, 1217 (2010) 1942–1949

Contents lists available at ScienceDirect

Journal of Chromatography A

journa l homepage: www.e lsev ier .com/ locate /chroma

numerical study of the assumptions underlying the calculation of the
tationary zone mass transfer coefficient in the general plate height model of
hromatography in two-dimensional pillar arrays

aan De Wildea, Frederik Detobelb, Johan Deconincka, Gert Desmetb,∗

Research Group Electrochemical and Surface Engineering, Department of Electro Technique and Energy Technique, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

r t i c l e i n f o

rticle history:
eceived 28 October 2009
eceived in revised form 9 January 2010
ccepted 22 January 2010
vailable online 29 January 2010

eywords:
D-Pillar array columns
and broadening

a b s t r a c t

The present study investigates the validity of one of the key assumptions underlying the general plate
height model of chromatography, i.e., the presumed independency of the individual band broadening
contributions. More precisely, it is investigated under which conditions the mass transfer inside the
stationary zone (e.g., porous pillars) is independent from the axial transport of species outside this zone,
and how strongly any such dependency would affect the validity of the general plate height model of
chromatography. For this purpose, detailed calculations of the species concentration distribution inside
and outside the porous pillars of a computer-mimic of a porous pillar array column have been made.
These simulations revealed a clear interplay between the mass transfer inside and outside the pillars,
-term
omputational fluid dynamics
ass transfer
odeling

manifesting itself as an asymmetry of the species concentration distribution inside the pillars. The latter
is in disagreement with the basic assumption used to calculate the value of the Cs-term of the general
plate height model. The asymmetry-effect is largest at low reduced velocities, high retention factors and
high intra-pillar diffusion coefficients. Fortunately, these are conditions where the Cs-term is relatively
small, which might explain why the general plate height model of chromatography (and based on the

an rep
symmetry assumption) c
the order of some 1–2%.

. Introduction

The band broadening in liquid chromatography (LC) columns is
ommonly modeled by assuming that it consists of four, indepen-
ent contributions:

the HA-term contribution, representing the dispersive contribu-
tions originating from the erratic flow profile in the randomly
shaped and sized through-pores of the packed bed media typi-
cally used in LC (so-called eddy-diffusion);
the HB-term contribution (=band broadening in absence of flow),
arising from the mixed-mode molecular diffusion through the
porous pillars and the interstitial void;

the HCm-term contribution originating from the slow (radial)
mass transfer in the mobile zone;
the HCs-term contribution originating from the slow mass trans-
fer in the stationary zone.

∗ Corresponding author. Tel.: +32 26293251; fax: +32 26293248.
E-mail address: gedesmet@vub.ac.be (G. Desmet).

021-9673/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2010.01.070
resent the band broadening in a porous pillar array within an accuracy on

© 2010 Elsevier B.V. All rights reserved.

Because of the presumed independency of these different mass
transfer processes, their contribution to the overall band broad-
ening process can simply be added. The general expression for the
band broadening (expressed in terms of the height of an equivalent
theoretical plate) in packed chromatographic columns is therefore
often written as [1,2]:

H = HA + HB + HCm + HCs (1)

wherein HA represents the eddy-dispersion contribution, which in
the presently considered perfectly ordered porous pillar array can
be theoretically described using a single term Giddings expression:

HA =
(

1
A

+ 1
D�i

)−1
dp (2a)

The HB-term in Eq. (1) represents the contribution of the effec-
tive longitudinal diffusion coefficient Deff, and can be calculated
as:

D

HB = 2 eff

ui
(1 + k′′) (2b)

wherein ui is the average interstitial velocity and k′′ is the zone
retention factor. The physical meaning of the latter, as well the
expressions for the two HC-terms are discussed further on.

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:gedesmet@vub.ac.be
dx.doi.org/10.1016/j.chroma.2010.01.070
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The additivity of the different terms appearing in Eq. (1) has been
iscussed in great detail by Giddings [3]. Whereas the additive law
as found widespread use, it should not be forgotten that Giddings
lso stated that the additive law is no longer correct as soon as there
re two competitive mechanisms (with different rate parameters)
ontributing to the same mass transfer process. This is for exam-
le what led Giddings to his famous coupling theory to represent
he eddy-dispersion, as he noted that this is an example of a band
roadening process that results from two different and compet-

ng transport mechanisms (convection and diffusion). It should be
emarked as a side-note that, with the notation adopted in Eq. (1),
he Giddings coupling terms for the eddy-dispersion are incorpo-
ated in the expression for HA (similar to the approach adopted in
or example Eq. (37) of Ref. [1]).

Although Giddings warned that the independency of the indi-
idual terms of Eq. (1) should never be taken for granted, this
dvice has mostly been forgotten, most probably because the
athematics and the physical interpretation of Eq. (1) are so con-

eniently simple. And also because the complexity of the geometry
herein the different mass transfer processes have to compete in
packed bed of spheres is so complex that important rate param-
ters such as the intra-particle diffusion can not be determined
ith a perfect accuracy [4,5] so that Eq. (1) could never be put

o a stringent accuracy test. With modern computation methods,
sing for example computational fluid dynamics (CFD) software
r using Lattice–Boltzman methods [6,7], such stringent tests can
owadays be made. The combined power of modern computers
nd state-of-the-art commercial CFD software allows calculating
he band broadening in systems with exactly known geometry and
ith exactly known local diffusion rates with an accuracy of about

.1% [8].
Given the above, we found it worthwhile to reconsider the valid-

ty of Giddings additive law using such CFD methods, as there
re a number of notable examples where this law is clearly not
atisfied. One of the most notable examples perhaps is the band
roadening in open-tubular LC or GC. The latter is described by
he famous Golay–Aris equation [9,10], and it can be verified that
his expression does not respect the additive law for what concerns
he contribution of the velocity field and the species retention [3].
nother area where one would not immediately suspect a viola-

ion of the additive law is the B-term band broadening describing
he longitudinal diffusion process. This process is usually modeled
ased on the assumption that the diffusion inside and outside the
articles are independent processes so that their joint effect can be

odeled using a (time-weighed) sum of the two individual contri-

utions. However, as has been demonstrated in [4,5], the diffusion
nside the particles cannot be treated independently from that out-
ide the particles. This can readily be seen from the sketch in Fig. 1,
howing that there are two competing diffusion processes that con-

ig. 1. (a) Top view of the considered packing geometry which is 2 unit cells high and 8
rrangement. (b) Unit cell with grid. (c) Close up on the right top quarter of the unit cell
ingle cylinder, showing two different trajectories that can be followed by a species mole
A 1217 (2010) 1942–1949 1943

tribute to the process of diffusing from point A to point B (which is
what the longitudinal diffusion process is all about). This can either
occur by diffusing around the particle (trajectory 1) or by following
the (usually slower) diffusion path through the particle (trajectory
2). The existence of these two trajectories implies there are two
competing mass transfer mechanisms to ensure the longitudinal
diffusion and this is sufficient to violate Gidding’s general criterion
for the validity of the addition law underlying Eq. (2).

Another reason why we found it worthwhile to reconsider the
validity of the additive law is that the independency of the differ-
ent mass transfer processes occurring in a column is also implicitly
assumed in the general rate model, which is currently the most
popular model used to analyze the individual band broadening
processes of newly developed support formats such as monolithic
columns and porous shell particles [11–16]. The general rate model,
originally established and solved by Lapidus and Amundson [17]
and Kucera [18], yields two relatively simple (and additive) expres-
sions for the HCm-term and the HCs-term contributions to Eq. (1).
These can generally be written as [2,19]:

HCm = 2
k′′2

(1 + k′′)2

1
˛Shpor

ε

1 − ε
ui

d2
p

Dmol
(3a)

HCs = 2
k′′

(1 + k′′)2

1
˛Shsz

ui

d2
p

Dsz
(3b)

wherein dp is the characteristic thickness of the stationary zone
(e.g., particle diameter in case of spherical particles), and wherein
Dmol and Dsz are the molecular diffusion coefficients in respectively
the mobile zone (liquid outside particles or pillars) and the station-
ary zone (intra-particle volume accessible to analytes). The zone
retention factor k′′, which emerges automatically when solving the
general rate model, is related to the more customarily employed
phase retention factor k′ (which is defined with respect to the linear
chromatographic velocity u0) via:

k′′ = (1 + k′)
εT

ε
− 1 (4)

wherein ε is the external column porosity and εT is the total column
porosity.

In Eq. (3), Shpor and Shsz respectively represent the dimension-
less mass transfer coefficient in the mobile and the stationary zone,
i.e., they are film mass transfer coefficients [11,17–20] that have
been multiplied by the pillar diameter and divided by the diffusion
coefficient to obtain a dimensionless parameter. It can be shown [2]

that Shsz is independent of the velocity (reflecting the absence of
flow inside the pillars), and its value can be calculated analytically
for a number of simple geometries, yielding for example Shsz = 10
for spherical particles and Shsz = 8 for cylindrical pillars. The mobile
zone mass transfer coefficient (Shpor) on the other hand is more dif-

unit cells wide. The packing of the cylinders is based on an equilateral triangular
to focus on the triangular grid that was used for all calculations. (d) Zoom-in on a
cule to travel from point A to B, as discussed in the text.
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cult to calculate, as the through-pore geometry is generally much
ore complex than the geometry of the particles or the pillars. In

ddition, it also depends in a yet unknown way on ui. In [2,19] we
ave shown that Shpor can best be represented using a two-term
xpression of the form:

hpor = �d + �c�i
1/3 (5)

herein �d and �c respectively represent the geometrical constant
or the diffusive and the convective contribution to the mass trans-
er to the pillar surface in the flow-through-pores surrounding the
illars. It should be remarked that Eq. (5) reduces to the same form
s that of the Wilson–Geankoplis or the penetration model [20]
xpression when �d is put to zero. The latter are two semi-empirical
orrelation that are commonly used to calculate the mass transfer
n the through-pores of packed beds [11–16]. It was however our
xperience that the band broadening in ordered pillar arrays cannot
e fitted appropriately without the addition of a �d-term [19]. The
eed for such a term is in our opinion a pure necessity, because its
bsence implies that the mass transfer would stop when the flow
tops. This is clearly incorrect, because the mass transfer can still
e maintained by pure diffusion if there is no flow.

The shape factor ˛ appearing in Eq. (3) is proportional to the
olid-volume based specific external surface ˝/Vsz, and is made
imensionless by multiplying it with a characteristic size (the
iameter dp of a spherical or cylindrical particle for example). For
he case of cylindrical micro-pillars with diameter dp, the definition
f ˛ results into ˛ = 4 (˛ = 6 for spherical particles).

= ˝

Vsz
dp = �ldp

�/4d2
pl

dp = 4 (6)

In Eq. (6), l represents the height of the cylinders (l is infinitely
arge in the presently considered 2D geometry).

Despite the sound mathematical basis of the general rate model,
t remains a given fact that it is also based on the presumed
ndependency of the different mass transfer contributions. One
f the clearest examples of this presumed independency is the
orm of the HCs-term expression given in Eq. (3b). This expression
s directly based on the assumption that the concentration dis-
ribution around the pillars has a perfect spherical or cylindrical
ymmetry. That is, it is assumed that the concentration distribu-
ion around the pillars is perfectly concentric (angular symmetry),
ndependently of the magnitude of the other mass transfer pro-
esses. Indeed, looking into the details of the general rate model
see e.g., Ref. [17]), it can clearly be noted that the differential equa-
ion expressing the intra-pillar transport only involves the radial
oordinate (the angle coordinate is absent because of the presumed
ymmetry). Obviously, the concentration profiles ensuing from this
ype of cylindrical or spherical symmetry calculations can only be
oncentric. This same angular symmetry is also assumed in the
Cs-term calculation procedure proposed by Giddings [3].

Returning to Fig. 1d, it can however readily be noted that the
ylindrical or spherical symmetry assumption is only valid if the
ransport outside the pillars (combination of convection and dif-
usion) occurs much faster than that inside the pillars, so that
he transport inside the pillars is independent from that out-
ide the pillars. If the exterior transport is not infinitely fast, one
gain encounters a situation wherein a given mass transfer pro-
ess (transport from A to B) can proceed along two competitive
outes: one purely intra-pillar diffusion route (trajectory 1), and
ne exterior route where both convective and diffusive transport

revails (trajectory 2). According to Giddings’ rule for the validity of
he additive law, the existence of two competing processes again
oints at the fact that the simple additivity of a HCs-term of the
orm shown in Eq. (3b) might be invalid. In their 2006-paper, Gritti
nd Guiochon already rightfully acknowledged this (see comment
. A 1217 (2010) 1942–1949

to Eq. (53) of that reference), but the solution they suggested, i.e.,
the inclusion of a fudge factor Ftrans, has found little resonance and
was not fully elaborated.

Given the above, the present study has been set up to explic-
itly investigate the validity of the additive law assumption for the
HCs-term as given by Eq. (3b). This validity has been investigated by
calculating the species concentration distribution inside and out-
side the porous pillars of a computer-mimic of a porous pillar array
column using a commercial CFD-package. Studying the band broad-
ening in perfectly ordered systems provides the purest possible
view on the HCs-term contribution, as its effect is not obscured
by the eddy-dispersion strongly dominating the band broaden-
ing in real packed bed columns. Furthermore, since all results are
obtained in silico, all system parameters (e.g., the mobile zone and
the intra-pillar diffusion coefficient) are exactly known as they can
be directly imposed by the user when defining the simulation prob-
lem. Another advantage of the adopted approach is the ease with
which the mass transfer processes and the formed concentration
gradients can be visualized.

Since the general plate height model of chromatography (cf.
Eqs. (1) and (3)) has been established without making any a pri-
ory assumption about the degree of order or the dimension of the
system (2D versus 3D), and since also the conditions underlying
the validity of the additive rule are independent of the degree of
order and the dimensions of the chromatographic bed, the general
insights obtained in the present study should also apply qualita-
tively to all real packed column systems.

2. Considered geometries and employed numerical
methods

Fig. 1 shows the general lay-out of the considered 2D geometry
(top view), as well as the computational grid used to solve the gen-
eral convection-diffusion mass balances. To generate a maximal
isotropicity, the micro-pillars were positioned on the grid points
of an equilateral triangular grid, with sides z (z = 1.2294dp [21])
selected such that the total pillar volume exactly makes up 60%
of the total bed volume, so as to yield a chromatographic bed with
an external porosity of exactly ε = 0.40. The flow domain consisted
of 8 consecutive unit cells in the x-direction and 2 unit cells in the
y-direction. The global domain was then divided in about 130,000
grid cells.

The set of partial differential equations determining the flow
field and the species dispersion was solved using an in-house
developed software package [22,23] using a combination of finite
element and residual approaches, the details of which have already
been described elsewhere [6]. In short, a combined finite ele-
ment and residual approach are used to solve the incompressible
Navier–Stokes equations for a Newtonian fluid [6], combined with
an extra force term (Lorentz force) if considering the case of electro-
osmotic flows [24–27]. The flow field was calculated by imposing a
given constant velocity at the inlet plane while a reference pres-
sure was applied as the boundary condition at the outlet plane
of the geometry. The lateral planes were subjected to a symmetry
boundary condition.

The accuracy of the employed solver has been demonstrated
in [6,28], where the plate heights calculated in a flow between two
parallel stationary zone plates with gap d agreed to within 0.1% with
the existing analytical solution. To achieve this accuracy, several
grid sizes and time steps were used and compared with the analyt-

ical solution. The 0.1% accuracy was obtained in the case for which
a further decrease in the calculation grid size and a further increase
in the number of time steps no longer changed the result. The same
grid size and time step independency was ensured when investigat-
ing the more complex geometry of the cylindrical pillar array case.
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ence, the reported result is obtained under conditions of maxi-
al accuracy. Furthermore, since we use our own developed solver

outine, which is optimized to solve this kind of problems in a very
erformant manner, we even refined the grid size and increased
he amount of time steps beyond this point, as the computational
ost was already reduced to a minimum by the optimized solver
ramework. Another confirmation for the accuracy of the numeri-
al simulations was that the first order moment, corresponding to
he mean residence time of the species, corresponded exactly (to
ithin 0.02%) to the expected value based on the imposed values

or the interstitial velocity and k′′.

. Results and discussion
.1. Fitting quality of the general plate height model

Fig. 2 shows how the plate height curves for the two dif-
erent considered values of the intra-pillar diffusion coefficient:

ig. 2. Reduced van Deemter plot for (a) Dsz = 5 × 10−10 m2 s−1 and (b)
sz = 1 × 10−10 m2 s−1 and for different values of k′′: k′′ = 1 (©), k′′ = 2 (�), k′′ = 3

�), k′′ = 5 (�), k′′ = 8 (�) and k′′ = 10 (�). The solid lines were obtained by fitting
he geometrical parameters (leading to A = 0.021, D = 0.03, �c = 6.42 and �d = 4.2)
ppearing in Eqs. (2a) and (5) to all the computed data points (Dsz = 5 × 10−10 m2 s−1

nd 1 × 10−10 m2 s−1-cases are fitted simultaneously). The value for Shsz was kept
onstant at its theoretical value (Shsz = 8) and Deff was taken from independent mea-
urements of the band broadening in the absence of convection (see Table 1 for the
xact values).

able 1
alculated value of the effective diffusion coefficient Deff (x10−10 m2 s−1), derived
rom peak-parking simulations for every considered combination of the molecular
iffusion coefficient Dm , intra-pillar diffusion coefficient Dsz and zone retention fac-
or k′′ (all data relate to a mobile phase diffusion coefficient Dmol = 1 × 10−9 (m2 s−1).
n the case of non porous pillars, there is no intra-pillar diffusion and k′′ equals zero.
n this case, Deff is 6.21 × 10−10 m2 s−1.

Dsz (m2 s−1) k′′

1 2 3 5 8 10

5 × 10−10 6.70 6.55 6.25 5.64 4.81 4.45
1 × 10−10 3.95 3.09 2.81 2.24 1.96 1.77
Fig. 3. Residual plots of the fitting shown in Fig. 2 (parameters fitted by considering
the data series for Dsz = 5 × 10−10 m2 s−1 and Dsz = 1 × 10−10 m2 s−1 simultaneously).
Same legend key as in Fig. 2.

Dsz = 5 × 10−10 m2 s−1 (Fig. 2a) and Dsz = 1 × 10−10 m2 s−1 (Fig. 2b)
vary as a function of the velocity and the zone retention factor.
As is customary in the field of LC, the data have been represented
in the dimensionless format of h = H/dp versus �i = uidp/Dmol. The
obtained h versus �i curves obviously depend very strongly on the
value of Dsz and, in the low Dsz-case, also on the value of k′′. This has
already been discussed in great detail in [28] and is similar to that
observed in a sister study [19], where the band broadening in per-
fectly ordered 3D structures was investigated. In short, this strong
dependency is due to the exceptionally strong contribution of the
HCm- and HCs-term compared to packed bed columns.

The full lines in Fig. 2 represent the best fit lines with Eq. (2),
obtained using the values of k′′ and Dsz that were used in the simu-
lations to calculate the expressions for HCm and HCs, and using one
set of best fit values for the A-, D-, �d and �c-constants (which are
all plain geometrical constants). The fitting of these constants was
conducted by considering the different (h,�)-curves for the differ-
ent cases of k′′ and Dsz (12 in total) simultaneously and using the
total sum of squares of the relative fitting error as the goal function
of the fitting routine of the Solver add-in of MS® Excel (see figure
caption for the resulting best fit values).

As can be noted from Fig. 2, the general plate height model
defined by Eqs. (1) and (3) fits the computed plate height data
remarkably well [28]. A similar fitting accuracy was observed in
a sister study [19], conducting band broadening simulations in a
perfectly ordered 3D geometry. The overall excellent fit between
the general plate height model and the computed plate height data
can in one sense also be considered as a validation of the employed

(in-house developed) numerical computation schemes.

However, analyzing the fitting quality in greater detail by plot-
ting the relative fitting residuals as a function of �i (Fig. 3), it can
be observed that the fitting errors are not random but display
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ome systematic trends. These fitting errors therefore might point
t some shortcomings of the general plate height model and the
nderlying additive law. At some particular values (mainly around
i,opt) deviations of the order of 1–2% are observed. In real columns,
tting residuals of this order of magnitude would be considered as

alling within the measurement accuracy limit, but the CFD calcu-
ations offer a much larger accuracy (order of 0.1% in the accuracy
heck with the analytical solution for the parallel plate channel
ystem [6]) so that the deviations observed in Fig. 3 should be con-
idered significant. These deviations are clearly systematic and not
andom, implying that they point at an intrinsic inability of the gen-
ral plate height model to exactly represent all the subtleties of the
and broadening process.

Interesting to note is that the absolute fitting residuals sys-
ematically go through a maximum around �i,opt, i.e., around the

inimum of the plate height curve (please note from Fig. 2 that
i,opt varies with k′′ for the cases shown in Fig. 3a, whereas �i,opt
emains around �i = 5 for the cases shown in Fig. 3b). The other
ain general observation we can make is that the fitting errors

f the Dsz = 5 × 10−10 m2 s−1-case are somewhat larger than in the
sz = 1 × 10−10 m2 s−1-case, especially for the k′′ = 8- and the k′′ = 10-
ases (solid triangles and open squares).

.2. Detailed study of the intra-pillar concentration profiles

We subsequently investigated whether these systematic devi-
tions can be linked to any deviation from the angular symmetry
ssumption underlying the expression for the HCs-term given by
q. (3b). CFD simulations are ideally suited for this purpose, as
he post-processing part of the simulation software allows mak-
ng animated representations of how the species concentration
istribution transforms as it makes its way through the flow-
hrough-pores and the meso-porous pillars. These animations can
e viewed while reading the online version of the manuscript and
re also available as supplementary material (Mov k2 Dsz 1 Pe3-
5-60, Mov k2 Dsz 5 Pe3-15-60, Mov Pe15 Dsz 1 k2-5-10 and
ov Pe15 Dsz 5 k2-5-10). When studying the movies, please note

hat the colour scale is constantly updated as the band moves
hrough the column to maintain a maximal colour resolution
red = highest concentration at that moment, blue = lowest concen-
ration at that moment). Here we only discuss one video frame
elected from each movie (see Fig. 4a, b, etc.). For all cases repre-
ented in Figs. 4–7, this frame has been taken at the time at which
he center of mass of the peak is positioned exactly in the middle
f the represented flow geometry.

Fig. 4 shows how the concentration profiles (top view) depend
n the flow rate (quantified here via the dimensionless �i-number)
or a fixed value of k′′ and Dsz (k′′ = 2 and Dsz = 1 × 10−10 m2 s−1). As
an clearly be noted, the concentration profile inside the individual
illars varies from strongly asymmetric at low �i to nearly perfectly
ymmetrical (i.e., concentric) at high �i. This change in symme-
ry can easily be understood as follows. At high �i, the transport
round the pillars is sufficiently fast to rapidly bring the species
rom the upstream front of the pillars to the rear of the pillars
efore a significant amount of species starts to enter the pillars.
s such, the species concentration is distributed evenly around

he individual pillars, leading to a nearly perfect angular symme-
ry of the concentration at the pillar boundaries. Considering on
he other hand the low �i-case (�i = 3), it can clearly be noted that
he convective transport along the pillars is in this case not fast

nough to completely suppress the diffusion path through the pil-
ars. As a consequence, a strongly asymmetric concentration profile
s obtained. Similar asymmetric concentration profiles have already
een reported under perfusive flow conditions in capillary elec-
rochromatography [29].
. A 1217 (2010) 1942–1949

Because of this asymmetry, we can expect that the Shsz-value
appearing in the HCs-term will no longer be given by Shsz = 8,
because the latter value is obtained under the strict assumption
of an angular symmetry of the concentration boundary conditions
(see Section 1). Since the degree of asymmetry changes with the
�i-number, it can furthermore be inferred that the value Shsz is not
even a constant, as assumed in Eq. (3b), but will vary with �i in the
small �i-range.

Since the angular symmetry conditions leading to Eq. (3b) are
clearly not satisfied in the low �i-range, we can now better under-
stand the non-perfect fit between the general plate height model
and the computed CFD data observed in Fig. 3. Since the assump-
tion of a constant Shsz = 8-value appearing in Eq. (3b) is intrinsically
wrong at low �i (the Shsz = 8-value only holds for the case of a
mass transfer process with angular symmetry), one can simply not
expect that the 4-term expression given by Eq. (1), with HCs given
Eq. (3b), is able to fit the numerically computed data. However,
trying to improve the model by accounting for the asymmetry in
the boundary conditions of the concentration profile in the pillars
at low �i seems very difficult, as it requires the introduction of
the angular coordinate as an extra space dimension. This in turn
increases the dimension of the set of partial differential equations
that need to be solved, which inevitably leads to unwieldy mathe-
matics.

The effect of the asymmetry of the boundary conditions on the
Shsz-value can also be formulated in terms of Giddings’ competi-
tive transport mechanisms rule for the validity of the additive rule.
As indicated by the arrows added to Fig. 4a, there are clearly two
competitive routes along which species can be transported from
point A to B: one convective/diffusive trajectory around the pil-
lars, and one purely diffusive trajectory through the pillars. When
�i is sufficiently large, the extra-pillar route is infinitely fast com-
pared to the intra-pillar route, so that the competition between
both routes is ruled out (in which case simply remains a con-
stant) but when �i becomes sufficiently small (e.g., reaching the
value of �i = 3 as is the case in Fig. 4a) the two routes become
competitive and start to influence each other, implying that the
one contribution can no longer be calculated independently of the
other.

The effect described here is similar to an effect described by
Gritti and Guiochon [1], arguing that the axial transport inside and
outside the porous particles of an HPLC column influence each other
and suggesting a dependency between the diffusion through the
particles and the axial dispersion (eddy-dispersion). Whereas these
are most certainly also two band broadening sources that influence
each other and can therefore not be simply added, the present study
shows that the axial transport outside the porous particles also
influences the value of the geometrical constant in the HCs-term,
whereas this constant is usually considered as exactly known in
many modeling studies [11,13–16,30].

Investigating now the effect of Dsz on the validity of the addi-
tive law and the accuracy of Eq. (3b) by plotting the concentration
profiles for a larger Dsz-case than that considered in Fig. 4, it can
be noted from Fig. 5 that the asymmetry-effect is in this case even
more pronounced, as now even the �i = 60-case still displays some
asymmetry. This larger asymmetry is obviously in agreement with
the higher intra-pillar transport rate. As a consequence, the trans-
port inside the pillars can compete better with the transport outside
the pillars, making it more difficult to achieve a perfect angular
symmetry.

The larger asymmetry observed in the Dsz = 5 × 10−10 m2 s−1-

case is of course also consistent with the fact that the
Dsz = 5 × 10−10 m2 s−1-data series fit less well to the general plate
height model than the Dsz = 1 × 10−10 m2 s−1-data, as can be noted
from the differences in fitting quality between Fig. 3a and b. In the
Dsz = 1 × 10−10 m2 s−1-case, the fitting residuals remain flat in the
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Fig. 4. Concentration distribution plots (top view) taken when the band has moved 20 �m downstream the pillar array for the case of k′′ = 2 and Dsz = 1 × 10−10 m2 s−1, and for
three cases of �i: (a) �i = 3, (b) �i = 15 and (c) �i = 60. The two trajectory lines added to (a) represent two different transport paths that can be followed by a species molecule
to travel from A to B, as discussed in the text.
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Fig. 5. Concentration distribution plots for the same co

arge �i-range, where the angular symmetry of the concentration
rofile is nearly perfect. In the Dsz = 5 × 10−10 m2 s−1-case, the fit-
ing residuals are forced into a more tortuous pattern. It is true that
he fitting residuals in the Dsz = 5 × 10−10 m2 s−1-case also system-
tically deviate from 0, but this is due to the fact that the two cases
ere fitted simultaneously, so that inevitably the fitting error is

shared” between the two cases. When the Dsz = 5 × 10−10 m2 s−1-
nd the Dsz = 1 × 10−10 m2 s−1-case are fitted independently (see
upplementary material), the Dsz = 1 × 10−10 m2 s−1-data series can
learly be much better fitted in the large �i-range (with residu-
ls really tending towards zero), where the angular symmetry of
he concentration profile is nearly perfect. This corroborates our

ypothesis that the imperfect fitting of the computed CFD data

s (at least partly) due to the interaction between the transport
ates outside the pillars and the HCs-term, an interaction that is
ot accounted for by general plate height model. This interaction
ainly occurs at low �i, and this is precisely the range where
ns as shown in Fig. 4, except that Dsz = 5 × 10−10 m2 s−1.

the fitting is at its worst in the Dsz = 1 × 10−10 m2 s−1-case. For the
Dsz = 5 × 10−10 m2 s−1-case, the fitting residuals are high over the
entire �i-range. In part, this can be considered as a reflection of the
fact that the latter case is more prone to interactions between the
intra- and the extra-pillar transport, and the enhanced asymmetry
of the concentration profiles inside the pillars. It should however
also not be forgotten that the dynamics of a multi-parameter fit-
ting algorithm can be so complex that it not necessarily provides
the best fit to the points where the model is most correct, so
that the conclusion derived here above should not be overempha-
sized.

Figs. 6 and 7 show the effect of the zone retention factor k′′ on the

angular symmetry of the intra-pillar concentration profiles. As can
be noted from Fig. 6 (Dsz = 1 × 10−10 m2 s−1-case), the asymmetry
increases with increasing k′′. This fully agrees with the fact that a
larger k′′-value implies that the species spend proportionally more
time in the pillars, hence giving more prevalence to the (asymme-
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Fig. 6. Concentration distribution plots taken when the band has moved 20 �m downstream the pillar array for the case of �i = 15 and Dsz = 1 × 10−10 m2 s−1, and for three
cases of k′′: (a) k′′ = 2, (b) k′′ = 5 and (c) k′′ = 10.
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Fig. 7. Concentration distribution plots taken for the sa

ry creating) intra-pillar transport route (cf. route 1 in Fig. 5a). The
symmetry enhancing effect of k′′ is confirmed in Fig. 7, albeit now
t a totally different level of overall asymmetry, as Fig. 7 relates to
he Dsz = 5 × 10−10 m2 s−1-case for which the overall asymmetry is
nyhow larger than for the case considered in Fig. 6.

Summarizing the above, it can be said that the angular symmetry
nderlying Eq. (3b) corresponds best to the physical reality for large
i, small k′′ and small Dsz. Or put otherwise, the angular symmetry
revails if the transport rate outside the porous pillars occurs suffi-
iently faster than that inside the pillars. Cases where this angular
ymmetry is lost and wherein the species do not fill up or leave
he pillars concentrically but rather axially can be expected to lead
o a HCs-contribution that is no longer exactly given by Eq. (3b)

ith Shsz = 8 (Shsz = 10 in case of spherical particles). This is the case

or systems with a high Dsz and/or a high k′′. Fortunately, the HCs-
erm contribution becomes vanishingly small at high k′′ (because of
ts k′′/(1 + k′′)2-dependency), so that any inaccuracy of the HCs-term
xpression becomes less influential. The asymmetry becomes espe-
nditions as in Fig. 6, except that Dsz = 5 × 10−10 m2 s−1.

cially problematic at low �i, but the HCs-term contribution luckily
also becomes vanishingly small in this range (especially if com-
pared to the B-term contribution).

4. Conclusions

The well-established expression for the HCs-term band broad-
ening contribution (cf. Eq. (3b)) is only valid when the species
concentration distribution inside the pillars is perfectly concen-
tric (i.e., has an angular symmetry). However, in cases with a low
reduced velocity, a high retention factor and a high intra-pillar dif-
fusion coefficient, the species fill up and leave the pillars rather
axially instead of concentrically, leading to a severe deviation from

the symmetry condition underlying Eq. (3b). The observed asym-
metry can be considered as a manifestation of the fact that the mass
transfer inside the stationary zone (e.g., porous particles or pillars)
is not independent from the axial transport of species outside this
zone. As a consequence, the basic rule underlying the addition of
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he individual terms in the general plate height expression of LC
Eq. (1)) is violated.

In the present study, this has been observed by noting
mall, yet significant deviations a set of highly accurate plate
eight data (obtained in a highly ordered medium to mini-
ize the obscuring effect of the eddy-dispersion) and Eq. (1).

hese deviations are most pronounced near the minimum of
he plate height curve. Fortunately, the asymmetry in the con-
entration profiles in the particles (cylindrical pillars in the
resently considered case) shows up under conditions where
he Cs-term is relatively small, so that the fitting error remains
ery small (maximally some 1–2%), over a broad range of
educed velocities (up to �i = 90) and retention factors (up to
′′ = 10).

omenclature

Mechanical, diffusion independent, dispersion coefficient
Hydrodynamic, diffusion dependent, dispersion coeffi-
cient

eff Effective diffusion coefficient (m2 s−1)
mol Diffusion coefficient in mobile zone (liquid outside parti-

cles or pillars) (1.0e−9 m2 s−1)
sz Diffusion coefficient in solid zone (intra-particle volume

accessible to analytes) (m2 s−1)
p Pillar diameter (m)

Plate height (m)
A Plate height originating from eddy-diffusion (m)
B Plate height originating from longitudinal diffusion (m)
Cm Plate height originating from mass transfer limitations in

the mobile zone (m)
Cs Plate height originating from mass transfer limitations in

the stationary zone (m)
Reduced plate height, h = H/dp

′ Phase retention factor
′′ Zone retention factor

Height of the cylinders (m)
hpor Sherwood number to express the mass transfer coeffi-

cient, kpor

hsz Sherwood number to express the mass transfer coeffi-
cient, ksz

i Average interstitial velocity (m s−1)
sz Volume of the stationary zone (m3)

reek symbols
Shape factor, ˛ = 4 for micropillars, ˛ = 6 for spherical par-

ticles
External column porosity

T Total column porosity
c Geometrical constant representing the convective contri-

bution to the mass transfer

[

[
[

A 1217 (2010) 1942–1949 1949

�d Geometrical constant representing the diffusive contri-
bution to the mass transfer

�i Reduced velocity or Peclet number, � = udp/Dm

˝ Contact surface between mobile and stationary zone (m2)
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